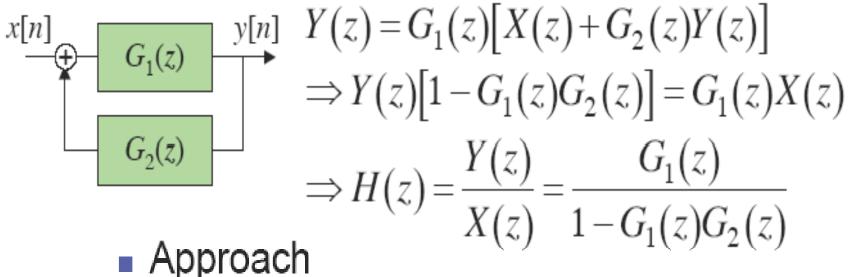
Block Diagrams

Useful way to illustrate implementations
 Z-transform helps analysis:

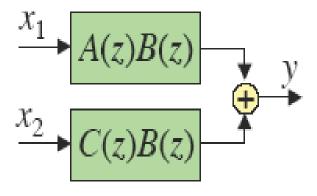


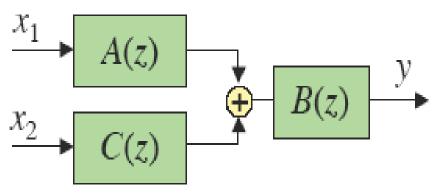
- Output of summers as dummy variables
- Everything else is just multiplicative

Equivalent Structures

- Modifications to block diagrams that do not change the filter
- e.g. Commutation H = AB = BA

• Factoring $AB+CB = (A+C) \cdot B$





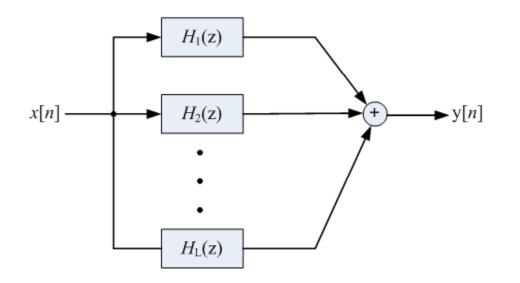
fewer blocks

less computation

131

• The Transfer Function of LTI system can be connected in 2 ways :

a. Parallel Connection :



The overall transfer function, $H(z) = H_1(z) + H_2(z) + ... + H_L(z)$ • b. Cascade connection :

$$x[n] \longrightarrow H_1(z) \longrightarrow H_2(z) \cdots H_L(z) \longrightarrow y[n]$$

The overall transfer function : $H(z) = H_1(z).H_2(z)...H_L(z)$

Each one of them can be implemented using any of the Direct Forms

- Canonic
 - number of delays in the block diagram representation is equal to the order of the difference equation

- Non-canonic
 - otherwise

FIR FILTER STRUCTURES

FIR FILTERS

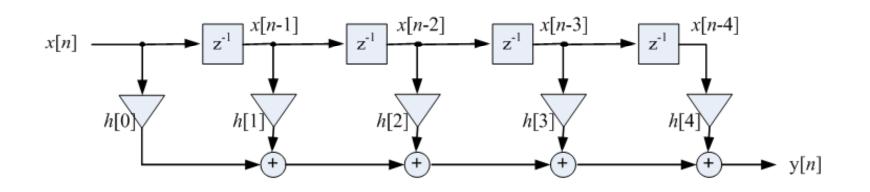
- These are realized using only two Forms:
- (as it only has the Numerator part i.e. ALL ZERO SYSTEMS)
- 1. Direct Form 1 or Tapped delay Line or Transversal delay Line Filter.
- 2. Cascade form

FIR Filter Structures

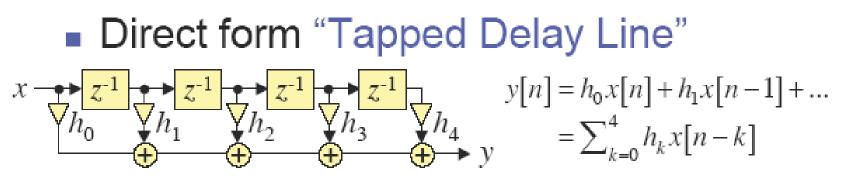
Direct form

- –An FIR filter of order N requires N + 1 multipliers, N adders and N delays.
- An FIR filter of order 4

y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + h[3]x[n-3] + h[4]x[n-4]



FIR Filter Structures



Transpose

Re-use delay line if several inputs x_i for single output y ?

- Cascade form
 - Transfer function H(z) of a causal FIR filter of order N

$$H(z) = \sum_{k=0}^{N} h[k] z^{-k}$$

Factorized form

$$H(z) = h[0] \prod_{k=1}^{k} (1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2})$$

Where k = N/2 if N is even and k = (N + 1)/2 if N is odd, with β_{2k} = 0

Example...

Determine the Direct Form & Cascade
 Form Realization for the transfer Function
 of an FIR Digital filter which is given by

$$H(z) = (1-1/4 Z + 3/8 Z^{2})(1-1/8Z-1/2Z^{2})$$

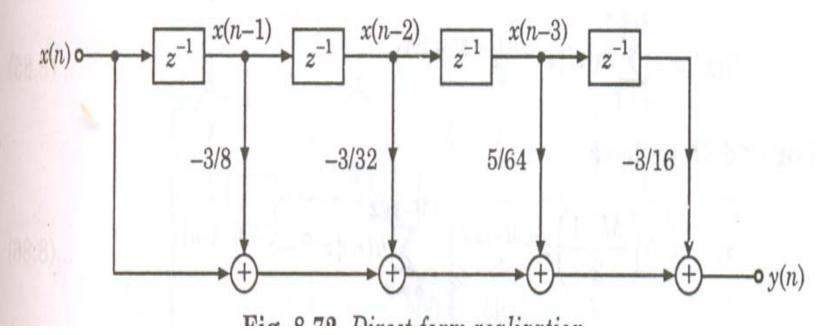
Direct Form

 We Simply Expand the equation to get this form as

ner us expand the transfer runotion m(e) i.e., equation (i) as under .

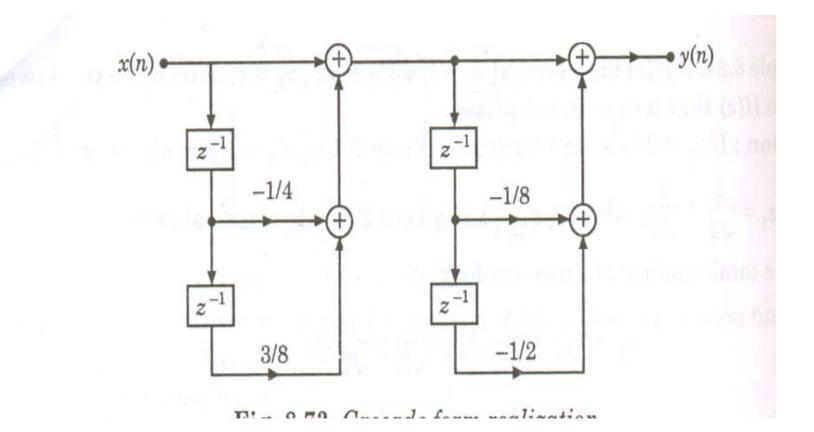
$$H(z) = 1 - \frac{3}{8}z^{-1} - \frac{3}{32}z^{-2} + \frac{5}{64}z^{-3} - \frac{3}{16}z^{-4}$$

This function can be realised in FIR dirct form as depicted in figure 8.72.

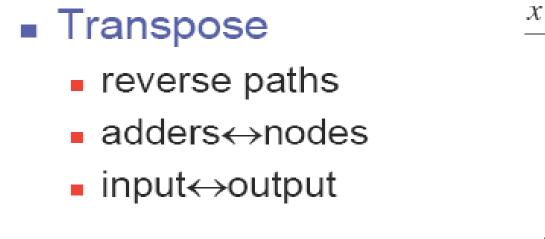


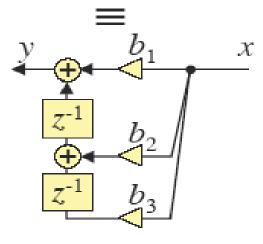
Cascade Form

• H(z)=H1(z)* H2(z) & hence



Equivalent Structures



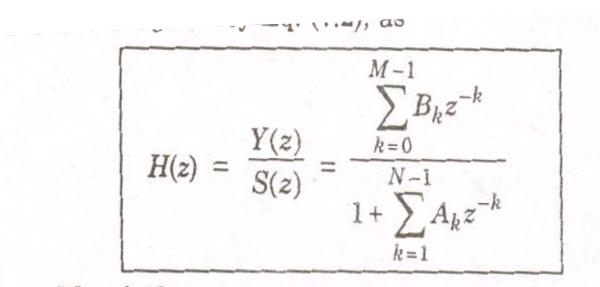


$$\begin{split} Y &= b_1 X + b_2 z^{-1} X + b_3 z^{-2} X \\ &= b_1 X + z^{-1} \Big(b_2 X + z^{-1} b_3 X \Big) \end{split}$$

IIR FILTER STRUCTURES

- IIR system/filter can be realized in several structures:
 - DIRECT FORM I
 DIRECT FORM II (CANONIC)
 CASCADE FORM
 PARALLEL FORM

IIR System Function



where M and N are integer numbers.

Bifurcation of H(z) into H1(z) & H2(z)

$$H(z) = \frac{\sum_{k=0}^{M-1} B_k z^{-k}}{1 + \sum_{k=1}^{N-1} A_k z^{-k}} = H_1(z) \cdot H_2(z) \qquad \dots (7.3)$$

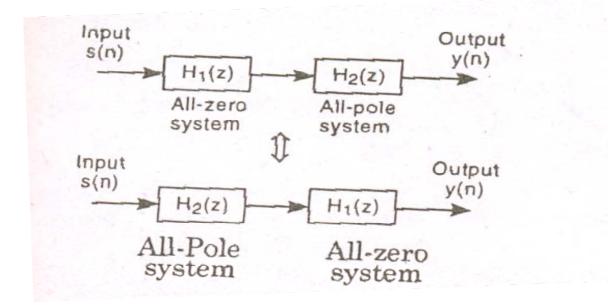
$$H_1(z) = \sum_{k=0}^{M-1} B_k z^{-k} \qquad \dots (7.4)$$

$$H_2(z) = \frac{1}{1 + \sum_{k=1}^{N-1} A_k z^{-k}}$$

$$= \left[1 + \sum_{k=1}^{N} A_k z^{-k}\right]^{-1}$$

$$= 1 - \sum_{k=1}^{N} A_k z^{-k} = 1 + \sum_{k=1}^{N} (-A_k) z^{-k} \qquad \dots (7.5)$$

Block Diagram of Direct Form I & II

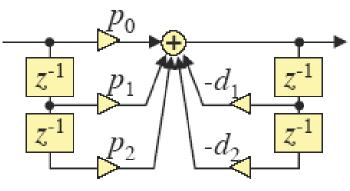


IIR Filter Structures

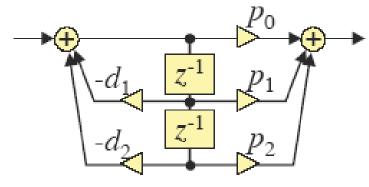
IIR: numerator + denominator $H(z) = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2} + \dots}{1 + d_1 z^{-1} + d_2 z^{-2} + \dots}$ $\frac{1}{D(z)}$ $= P(z) \cdot$ $\begin{array}{c|c} z^{-1} & p_1 \\ \hline z^{-1} & p_2 \end{array}$ *z*⁻¹ *z*⁻¹ $-d_1$ all-pole FIR IIR

IIR Filter Structures

Hence, Direct form I

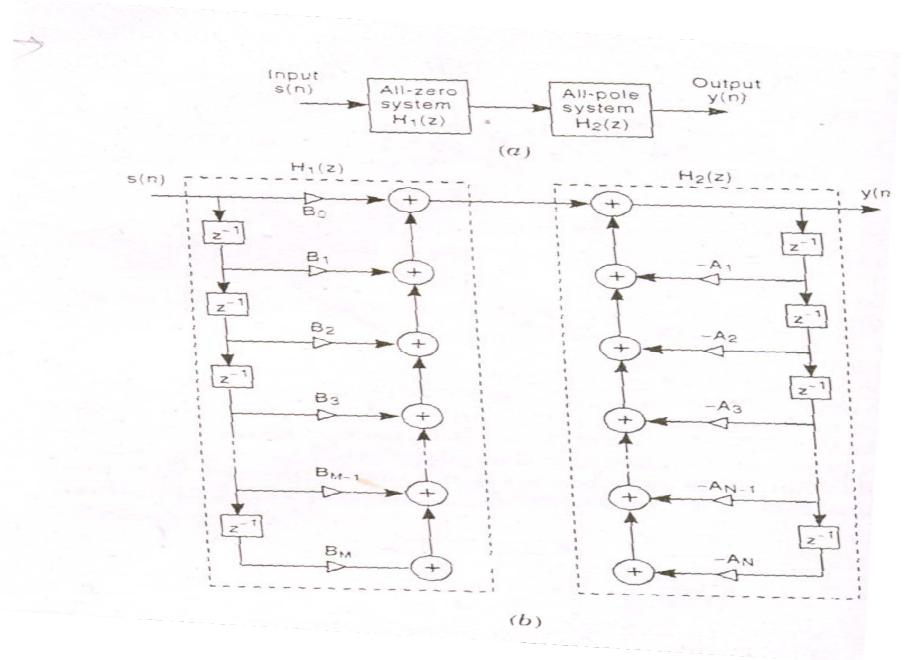


■ Commutation → Direct form II (DF2)

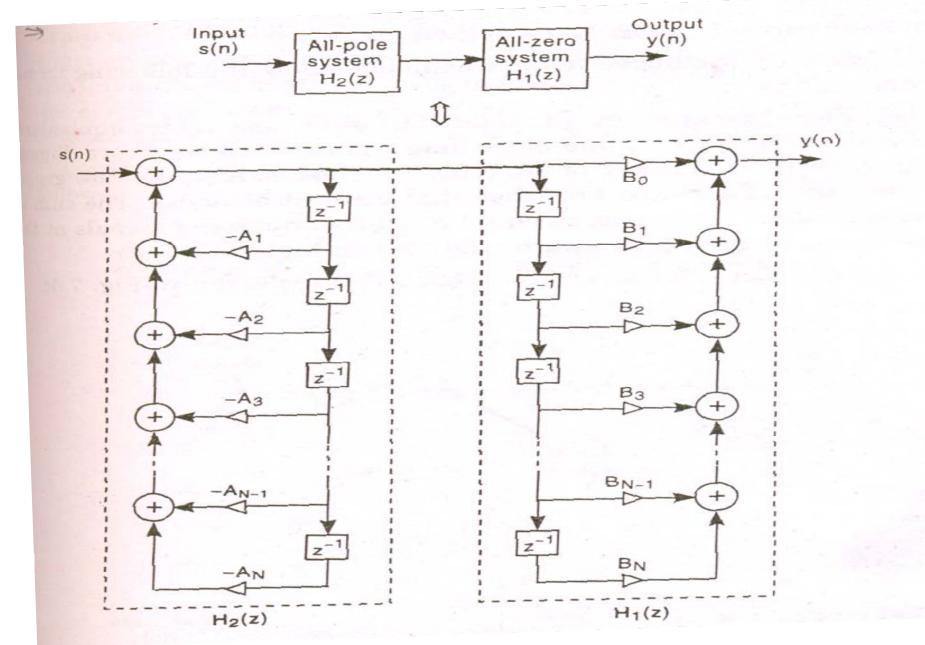


- same signal
- .:. delay lines merge
 - "canonical"
- = min. memory usage

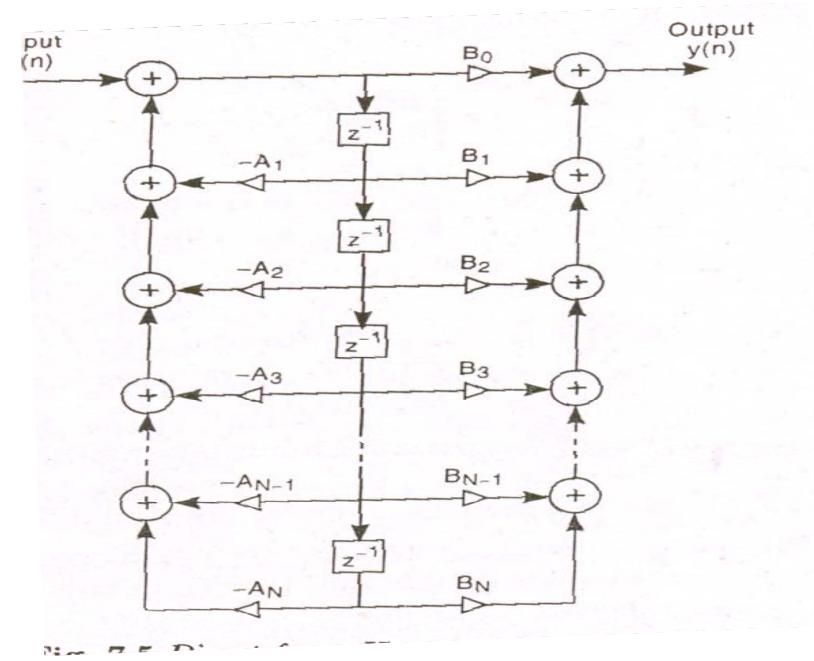
Direct Form I Realization



Direct Form II Realization



Canonic Direct Form II Realization



Parallel Form Realization

$$H_k(z) = \frac{B_{k0} + B_{k1} z^{-1}}{1 + A_{k1} z^{-1} + A_{k2} z^{-2}} \qquad \dots (7.9)$$

Coefficients B_{ki} ard A_{ki} real-valued system parameters. Parallel form network structures are shown in Fig. 7.9 and Fig. 7.10.

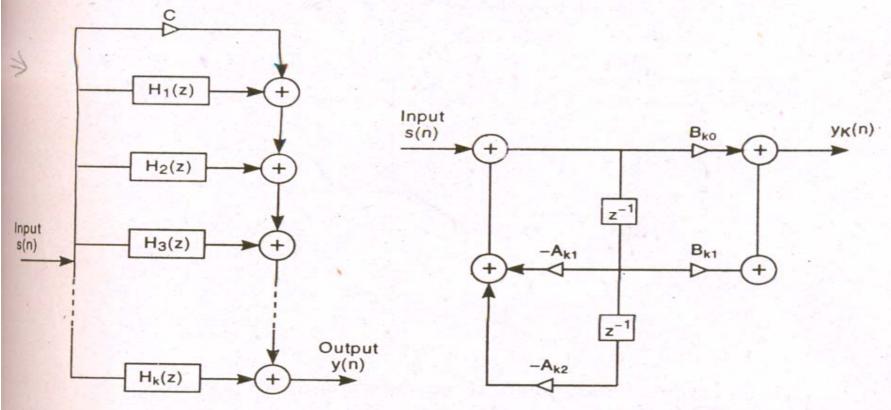
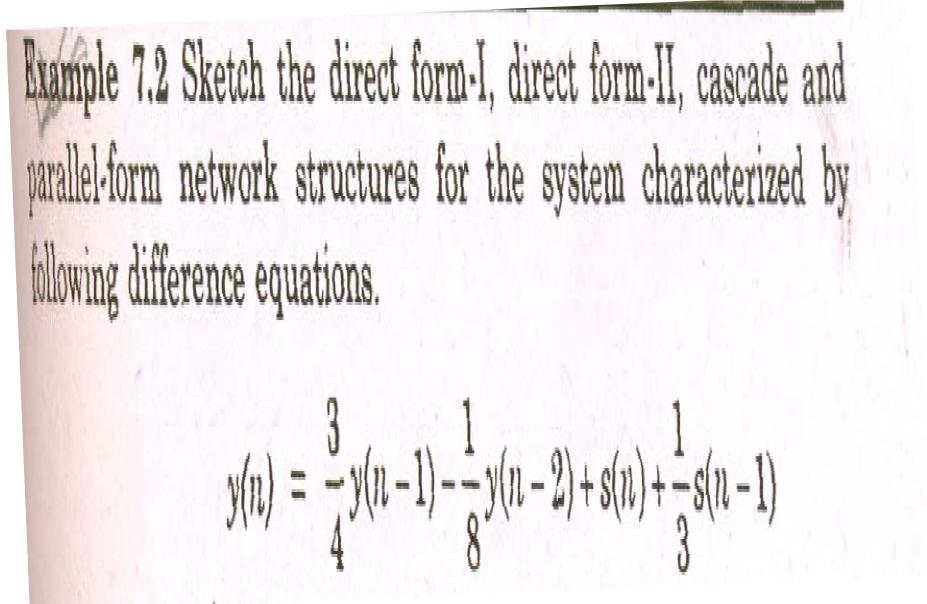
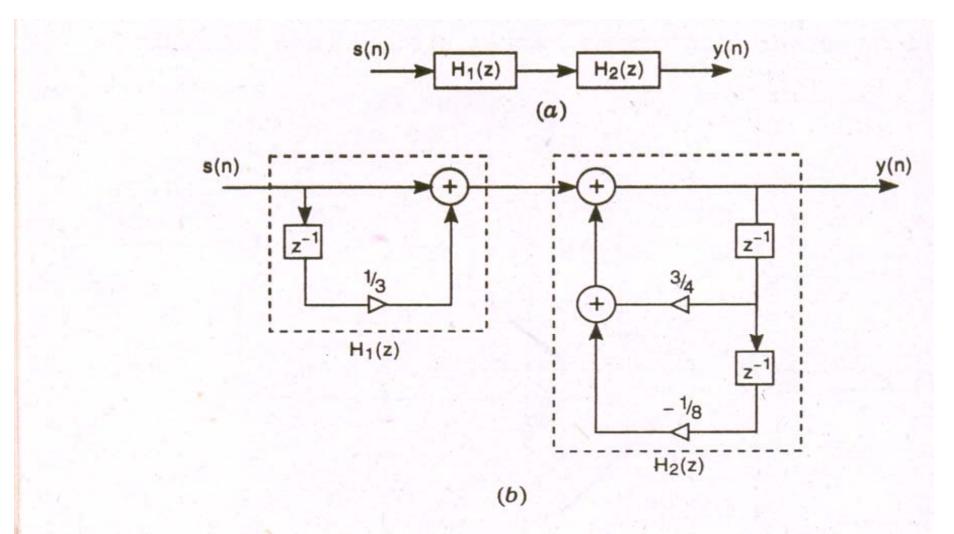


Fig. 7.9 Paralled-form network structure of IIR system. Fig. 7.10 Structure of IInd order section in a parallel-form network structure realization.

Example..



Direct Form I



(a) Block diagram of direct form-I of above problem.(b) Direct form-I, network structure of above filter.

Direct Form II & Cascade Form

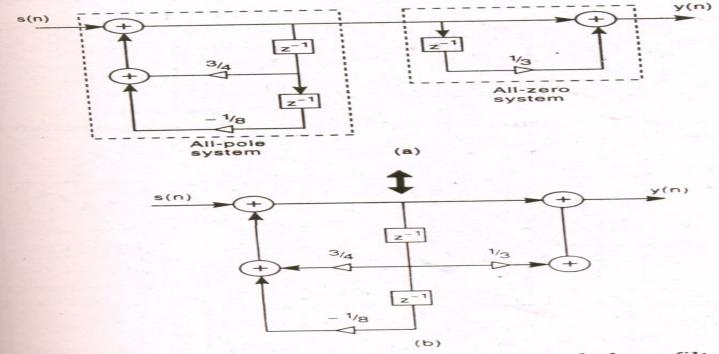


Fig. 7.12 Direct form-II realization of above filter.

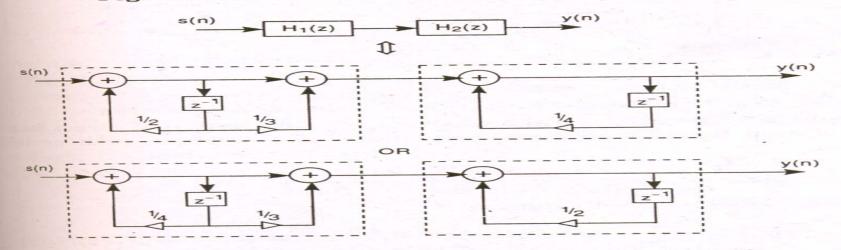


Fig. 7.13 Cascade-form network structure of above filter.

Parallel Form

- To get this we use PFE method :
- H(z) = Y(z)/X(z)
- Giving us A1=-7/3 & A2= 10/3 so implementing it we have -----

Parallel Form

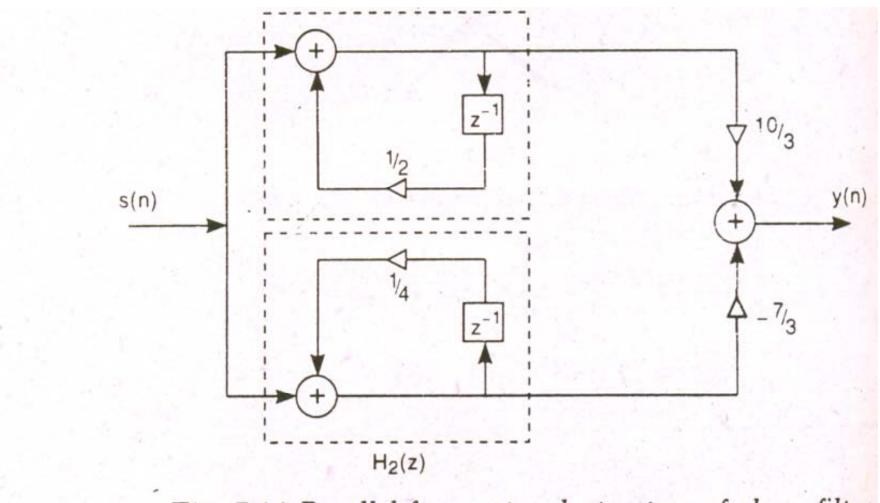


Fig. 7.14 Parallel form network structure of above filter.

- Direct Form I
 - Consider a third order IIR described by transfer function

$$H(z) = \frac{P(z)}{D(z)} = \frac{p_0 + p_1 z^{-1} + p_3 z^{-3}}{1 + d_1 z^{-1} + d_3 z^{-3}}$$

- Implement as a cascade of two filter section

$$X(z) \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

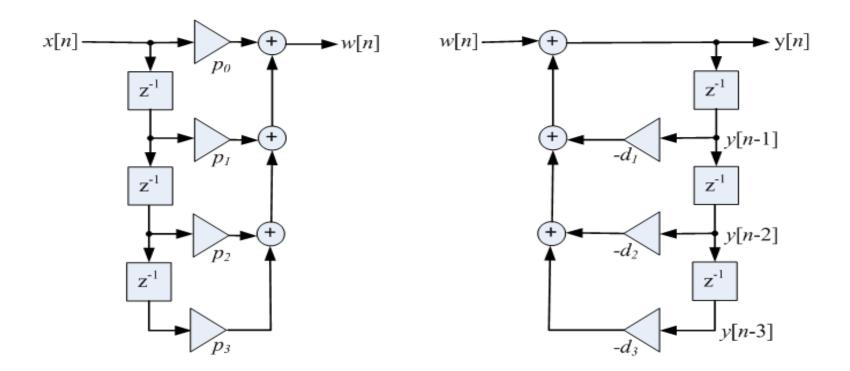
$$H_1(z) = \frac{W(z)}{X(z)} = P(z) = p_0 + p_1 z^{-1} + p_2 z^{-2} + p_3 z^{-3}$$

Where

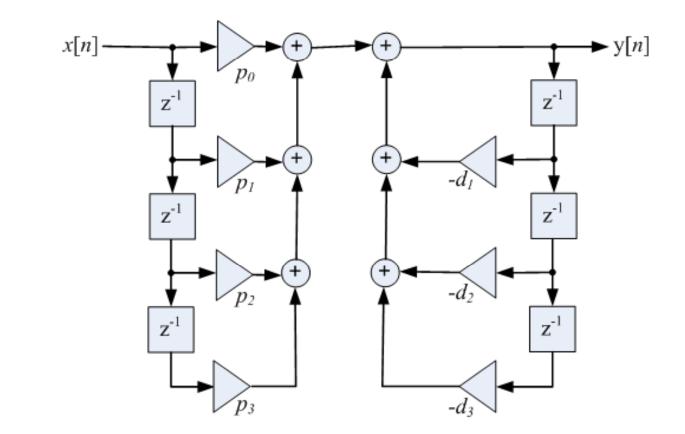
and

$$H_2(z) = \frac{Y(z)}{W(z)} = \frac{1}{D(z)} = \frac{1}{1 + d_1 z^{-1} + d_2 z^{-2} + d_3 z^{-3}}$$

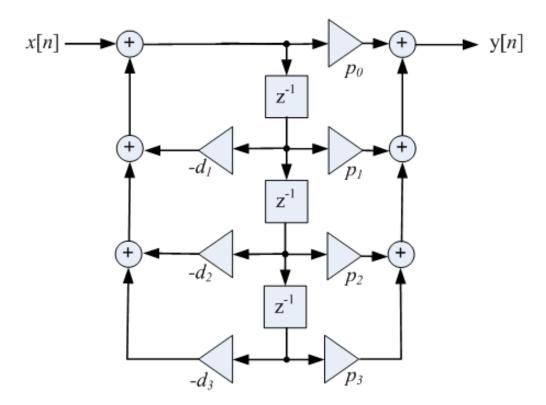
• Resulting in realization indicated below



• Direct Form I



- Direct Form II (Canonic)
 - The two top delays can be shared



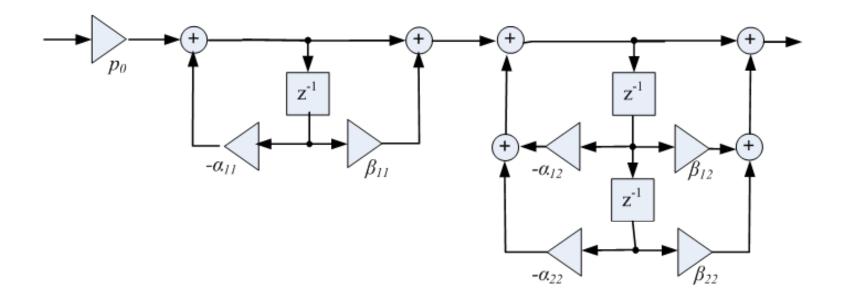
Cascade Form

$$H(z) = p_0 \prod_{k} \left(\frac{1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

• A third order transfer function

$$H(z) = p_0 \left(\frac{1 + \beta_{11} z^{-1}}{1 + \alpha_{11} z^{-1}} \right) \left(\frac{1 + \beta_{12} z^{-1} + \beta_{22} z^{-2}}{1 + \alpha_{12} z^{-1} + \alpha_{22} z^{-1}} \right)$$

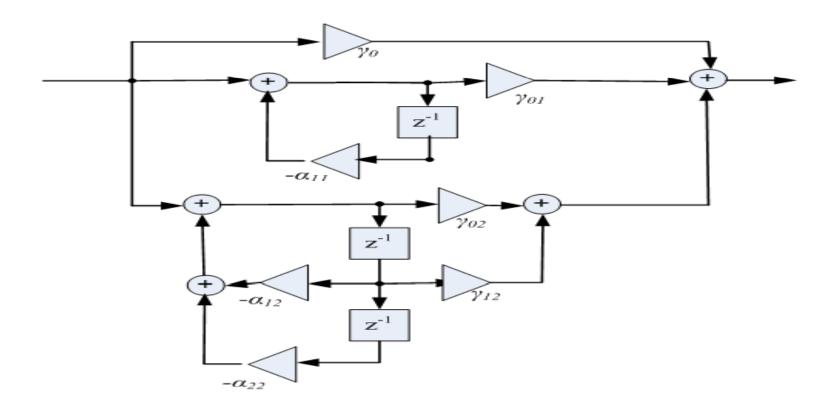
Cascade Form



 Parallel Form: Use Partial Fraction Expansion Form to realize them

$$H(z) = \gamma_0 + \sum_{k} \left(\frac{\gamma_{0k} + \gamma_{1k} z^{-1}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

 Parallel Form: used in High Speed Filtering applications(as operated parallely)



Parallel IIR Structures

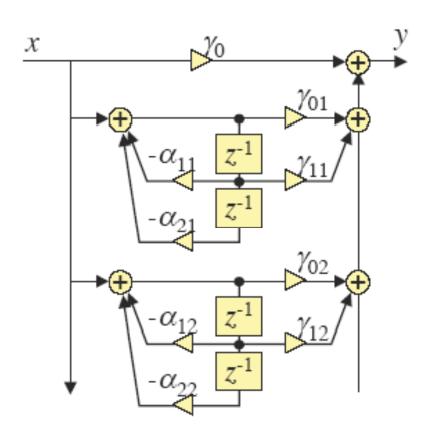
• Can express H(z) as sum of terms (IZT) $H(z) = \text{consts} + \sum_{\ell=1}^{N} \frac{\rho_{\ell}}{1 - \lambda_{\ell} z^{-1}} \quad \rho_{\ell} = (1 - \lambda_{\ell} z^{-1}) F(z)|_{z=\lambda_{\ell}}$

Or, second-order terms:

$$H(z) = \gamma_0 + \sum_k \frac{\gamma_{0k} + \gamma_{1k} z^{-1}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}}$$

Suggests parallel realization...

Parallel IIR Structures



- Sum terms become parallel paths
- Poles of each SOS are from full TF
- System zeros arise from output sum
- Why do this?
 - stability/sensitivity
 - reuse common terms,